Effects of acoustic gradient noise from functional magnetic resonance imaging on auditory processing as reflected by event-related brain potentials.
نویسندگان
چکیده
The processing of sound changes and involuntary attention to them has been widely studied with event-related brain potentials (ERPs). Recently, functional magnetic resonance imaging (fMRI) has been applied to determine the neural mechanisms of involuntary attention and the sources of the corresponding ERP components. The gradient-coil switching noise from the MRI scanner, however, is a challenge to any experimental design using auditory stimuli. In the present study, the effects of MRI noise on ERPs associated with preattentive processing of sound changes and involuntary switching of attention to them were investigated. Auditory stimuli consisted of frequently presented "standard" sounds, infrequent, slightly higher "deviant" sounds, and infrequent natural "novel" sounds. The standard and deviant sounds were either sinusoidal tones or musical chords, in separate stimulus sequences. The mismatch negativity (MMN) ERP associated with preattentive sound change detection was elicited by the deviant and novel sounds and was not affected by the prerecorded background MRI noise (in comparison with the condition with no background noise). The succeeding positive P3a ERP responses associated with involuntary attention switching elicited by novel sounds were also not affected by the MRI noise. However, in ERPs to standard tones and chords, the P1, N1, and P2 peak latencies were significantly prolonged by the MRI noise. Moreover, the amplitude of the subsequent "exogenous" N2 to the standard sounds was significantly attenuated by the presence of MRI noise. In conclusion, the present results suggest that in fMRI the background noise does not interfere with the imaging of auditory processing related to involuntary attention.
منابع مشابه
Effects of noise from functional magnetic resonance imaging on auditory event-related potentials in working memory task.
The effects of functional magnetic resonance imaging (fMRI) acoustic noise were investigated on the parameters of event-related responses (ERPs) elicited during auditory matching-to-sample location and pitch working memory tasks. Stimuli were tones with varying location (left or right) and frequency (high or low). Subjects were instructed to memorize and compare either the locations or frequenc...
متن کاملAnalysis of Memory-Related Brain Activation Maps in Sleep-Depriveation using Functional Magnetic Resonance Imaging
Background and purpose: Insomnia is a common sleep disorder with negative consequences such as decreased quality of life. In this study, the effect of sleep deprivation on memory in both young and older adults was investigated using functional magnetic resonance imaging (fMRI). Materials and methods: In this retrospective study, fMRI data of 40 healthy subjects (17 young and 23 older people) w...
متن کاملAcoustic noise and functional magnetic resonance imaging: current strategies and future prospects.
Functional magnetic resonance imaging (fMRI) has become the method of choice for studying the neural correlates of cognitive tasks. Nevertheless, the scanner produces acoustic noise during the image acquisition process, which is a problem in the study of auditory pathway and language generally. The scanner acoustic noise not only produces activation in brain regions involved in auditory process...
متن کاملUsing functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas
Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...
متن کاملUsing functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas
Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 14 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2001